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Abstract—A general and simple method is presented for the determination of stress intensity factors
in elasticity problems involving several interacting cracks and complex crack shapes. The method
uses a superposition scheme and an approximation of certain unknown crack-line tractions by a
series of base functions. Crack interaction is accounted for by the stresses generated by an isolated
line crack at a location of another crack when the former is subjected to the combination of base
functions. The crack-line tractions are determined from the solution of a system of linear algebraic
equations. Several examples which illustrate special forms of the method are presented. These
include configurations like H-crack shapes motivated by studies in fracture of fibrous metal matrix
composites. Comparison of results with available solutions shows that the method gives accurate
results even when very few base functions are selected in the analysis.

[. INTRODUCTION

There are several situations in fracture mechanics which involve a complicated arrangement
of cracks that is not amenable to a simple method of analysis. In some cases, the difficulty
lies in having many cracks interacting with cach other, e.g. when a single crack is embedded
in a microcrack array. In other cases, as in crack branching phenomena, the complexity of
the problem is due to the presence of irregular crack shapes consisting of several segments
which form what is sometimes called a zig-zag or nonlincar crack. In relatively simple
situations of multiple crucks, such as aligned cracks and crack branches, classical methods
of analysis are applicable and they lead to elegant exact solutions, e.g. Erdogan (1962), Sih
(1965). However, approximate methods are unavoidable in more complicated situations.
Some existing studies have employed the representation of cracks by dislocutions
(Chudnovsky et al. 1987a,b; Vitck, 1977), which leads to integral equations which can be
solved in an approximate way. Other investigations of zig-zag crack configurations use
methods based on polynomial approximations and truncation of a conformal mapping
function (Kitagawa and Yuuki, 1975, 1978). A particularly simple treatment of crack
interaction phenomena has been introduced recently by Kachanov (1985, 1987) who showed
that many multiple crack problems can be solved with the help of a superposition procedure
which leads to a system of lincar algebraic equations for-certain equilibrated crack-line
tractions. Another variant of a crack interaction method is given by Horii and Nemat-
Nasser (1985) where inhomogeneity problems are also treated.

This paper presents a general and simple method for computation of stress fields and
stress intensity factors in lincar elastic media which contain several cracks arranged in a
complicated configuration. The method uses a superposition technique which replaces a
configuration of N cracks by means of N different problems, each involving an isolated
crack located in an infinite medium and loaded by unknown tractions. Such representations
were used by Collins (1962), Dutsyshin and Savruk (1973) and more recently by Gross
(1982), Chudnovsky and Kachanov (1983), Chudnovsky et al. (1987a,b), Horii and Nemat-
Nasser (1983, 1985) and Chen (1984). In the present work a polynomial expansion for the
unknown crack line tractions allows onc to choose the number of suitable polynomials
required for any desired accuracy. Once the approximating polynomials, called base func-
tions in the sequel have been chosen, and the stress field due to a single crack in an infinite
medium loaded by any such function is known, the problem reduces to the solution of a
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Fig. L. Schematic of superposition of two aligned cracks in an infinite isotropic medium, loaded by
normal tractions applicd symmetrically at the faces of the cracks.

system of lincur equations for certain unknown coclficients. We show that Kachanov's
interaction scheme is o special case of the theory proposed herein, und that it corresponds
to the case in which the unknown crack-line tractions are approximated only by their
averages. In what follows, the method is formulated in the context of two-dimensional
isotropic clasticity, but it can be readily extended to anisotropic media and applied. in
principle, in three-dimensional problems.

The first scetion of the paper exposes the essence of the method by an example of its
application to the simple case of two aligned cracks for which an exact solution actually
exists (Erdogan, 1962). The second section describes the implementation of the method in
the more complicated case of three cracks arranged in an H-crack configuration. The
motivation for analysis of this problem will become evident in the companion papers in
which the solution of the H-crack problem is employed in analysis of discrete plastic shear
zones that are found at notches in fibrous metal matrix composites. In the last part of
the paper, the method is used to evaluate stress intensity factors in the following crack
configurations : (a) an H-crack loaded longitudinally, (b) an H-crack loaded transversely,
(¢) two parallel cracks under transverse normal stress, and (d) a T-cruck loaded in tension.
The results are compared with those which have been obtained in the literature with other
approaches, such as dislocation distributions and conformal mapping techniques.

2. A SIMPLE EXAMPLE

The essential features of the method proposed hercin can be itfustrated by an example
in which we consider two aligned cracks in an infinite isotropic medium, loaded by normal
tractions applicd symmetrically at the faces of the cracks (Fig. I). Let the length of the
cracks be 2d, (x = 1,2),1 and let £ denote the distance that separates the adjacent crack
tips. Define local coordinate systems (x,, y,) at the midpoints of the two cracks and apply
normal stresses pi(x,) which are symmetric with respect to the plane of the cracks. The
tractions will be taken as negative when they open the crack and vice versa,

The two-crack problem of Fig. | can now be formulated as a superposition of two
different problems in which each crack is regarded as a single crack in an infinite medium,

+ The indices x or f denote quantitics belonging to cither crack. and assume values 1 or 2 in this section.
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loaded by unknown surface tractions P, which are to be determined (Fig. 1). In the first
problem, let p,, be the stress at the imaginary location of crack 2, caused by an unknown
traction P, applied at crack 1. In the second problem, let p,, be the stress at the imaginary
location of crack 1, caused by an unknown traction P, applied at crack 2. For a super-
position of these two problems to represent the solution of the original problem of Fig. 1,
it is necessary to assure that

pi(x) = Pi(x)+palx) {la)
pi(x2) = Py(xa)+pia(x2). {1b)

The unknown functions P, will be estimated by a series of base functions which can be
conveniently represented by Legendre polynomials

N
Px)= Y a’[-L7(E)] 2

anl

where &, = (x,/d,), ai are unknown coefficients and L!™ are the Legendre polynomials
defined by

Lu=|‘ Ll(é)”é‘ L:(§)=§§:"§
Ly=10-18 Lad =% ¥+
i

ii(gz...:)" n=0123... &)

T2 deET

L.($)

In accordance with the adopted sign convention, the minus sign in (2) has been introduced
to indicate that cach base function loads the crack in an opening mode.

Define now by £ the stress resulting in the imaginary location of crack « when crack
# is loaded by — L™(&,). Since the functions L, are polynomials, the influence functions
JiHx, ) can be generated without much difliculty by using the solution of a single crack
located in an infinite medium and loaded by concentrated unit loads (sce the Appendix).
The functions py, are therefore given by

N
Ppa (%3} = Zo al i (x). @

Finally, let the original loads on the crack surfuaces be tractions resulting in an opening of
the crack so that

p:{-t:} = -6‘;("‘:)1 6: > 0. (5)

Substitution of (2), (4) and (5) into (1) provides

N N

Z dtP L (x,/d)) = o5 (x ) + Z al fe(xy) (6a)
nw n=0

N . N

Znaf,"i-f’(&fdz} = o3(0)+ Y &' f13(x2). (6b)
sw n=i

Ideally, eqns (1) should be satisfied pointwise, but in what follows they are satisfied
only approximately. If the summation in (6) is truncated at a finite N, 2NV + 2 equations for
the 2N+ 2 unknowns a, can be obtained in the following manner. Multiply (6a) by the
Legendre polynomial L(x,/d,). where j = 0,..., N, and integrate from —~d, to +4d, :
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+d, +d,
Z - Ln(xl/dl)Lj(xl/dl)dxl=J. o (%)L (x, /d}) dx,

LE2! -d, —d

N +d,
+ Z a” L (x /d) () dxy. (D)
d

naQ 4y

Using the non-dimensional coordinate &, = x,/d, and the orthogonality condition of the
Legendre polynomials

+1
J- . L (SOL(§)) dSy =042/ 2i+ D). ®
provides ¥+ | equations
N
di2a"/(2j+ D] = S}, + ¥ Fii"a,” ®
n=1

where

+dy +ddy
S =j a (e W, (v [dy) dyy. FS = S (x [dy)y dyy. (10

€, -4y

A similar procedure applied to equation (6b) yiclds the additional N + 1 cquations

Y
o247 [+ 1)] = Sy + 3 Fli"al” (1

n=0

where

vdy
5% = J’ o3 (X)L (X /dy) dxy, FU = f Sl (e fds) dxy. (12)

“a':

Equations (9) and (11) can now be solved for the 2N +2 unknowns «{™. Then, stress
intensity factors at the tips of the two cracks and the stress ficld can be obtained by reference
Lo the original superposition scheme of Fig. | and eqn (1).

The stress intensity factors at the four crack tips follow by integration of the well
known expression which gives this factor for a single cruck loaded by a concentrated unit
foud. For example. for crack 1 onc obtains

di£1,
K J‘ \/ U('l)dll (13)
\/mll

where a (), as explained below, is given by the right-hand side of (6a), and the + and —
signs correspond to the values of K| at the right and left tips, respectively,

The stresses induced by the two loaded cracks at any point in the clastic medium can
be found. in principle, as a sum of the stress induced by crack | loaded by £,{x,) plus that
due to crack 2 loaded by P,(x,). However, since eqns {6) arc not satisfied pointwise, the
option arises whether the left- or the right-hand side of (6) should be used to represent
P.(x,). To clarify this question, suppose that only one term is used (N = 0) in the series
(6). In this particular case, the right-hand side of (6) describes loading of the crack by the
originally prescribed tractions and by the nonuniform stress which is induced by the presence
of the other loaded crack, while the left-hand side of (6) represents loading of the cracks
by constant stresses which are the averages of the two preceding terms at each crack. Under
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Table 1.
K,,f‘p"\/;:i at inner tip Kip'y 7d at outer tip
Kachanov's Kachanov's
Exact results  predictions Exact results  predictions
Erdogan Kachanov Present Erdogan Kachanov Present
O={/ . +2d  (1962) (1985) predictions (1962) (1985) predictions

0.0t 2371 2.138 2.390 1.184 1175 1.186
0.001 5.395 3401 5.534 1.244 1.214 1.261
0.0001 13.347 4.731 11.646 1.280 1.227 1.325
10-* 93.03 7.309 26.320 1321 1.233 1.379

such circumstances. loading of the cracks by the right-hand side terms of (6) appears to be
preferable both in determination of the local stresses, and in evaluation of the stress intensity
factors in (13).

The results predicted by the above analysis for the case of equal length cracks
(d: = d; = d) loaded by a uniform load p° are illustrated in Table 1. where a comparison is
also presented with the exact solution Erdogan (1962) and the predictions of the Kachanov's
method. Our results were obtained with five approximating polynomials. and as mentioned
above, Kachanov's results correspond to the case of N = 0. The cracks were chosen very
close to each other to allow a strong interaction. At a value of ¢ = 0.01, the present
predictions are excellent. Even for 8 = 0.001, the error at the inner crack tip does not exceed
2.6% . As cxpected. the accuracy decreases when the cracks approach each other further,
espectully for the stress intensity factor at the inner tip. It is interesting to note however that
when the cracks almost touch cach other (8 = 10 *) the error for the stress intensity fuctor
at the outer tip is only of the order of 4%,

In conclusion of this simple exposition of the proposed superposition method, we note
that it is not necessary to use only the Legendre polynomials to approximate the unknown
tractions £,. Indeed, in the examples which follow we show that symmetric crack con-
figurations, such as the H- and T-cracks, suggest the use of other base functions which can
be incorporated in the solution. It is finally noted that crack closure effects have been
disregarded in the present paper.

3. ANALYSIS OF THE METHOD

The procedure outlined above can be readily generalized to the case of many interacting
cracks which are distributed in a specified manner in a plane, or in a three-dimensional
solid, We limit our treatment to the plane case. In particular, consider M interacting cracks
in the xy-plane. The cracks are no longer aligned in any special way, and each crack can
assume any given orientation with respect to the coordinate axes. Let d, denote the half-
length of crack 2, and let x,y, denote the local coordinate system of cach crack positioned
at the mid point of cach crack with y, = 0 denoting the crack plane. The Greek letters x
and f# will be used to denote individual crackssuch thate = 1,2,... ,M,and f = 1,2,... . M,
x # f8. Each crack is loaded by prescribed tractions ; in the local coordinate system of each
crack, p; (x,) will denote the normal component and 5% (x, ) the shear component of the local
traction. As before, the tractions pj(x,) which result in an opening mode will be taken as
negative. The 55(x,) tractions will be negative when the tractions at the upper face (y = 0%)
of the crack point in the x,-direction.

The solution of the many crack problem can again be found by the supcrposition of
N diffcrent problems in which cach crack is regarded as a single crack located in an infinite
medium and loaded by unknown tractions P,(x,) and S,(x,) to be determined. Let pg,(x,)
and sg,(y,) denote the normal and shear tractions respectively which are caused at the
imaginary location of crack z by tractions Py(xs) and Sg(x;) applied at the surrounding
cracks, fi, x # f. Therefore in analogy to (). the prescribed tractions at each crack are
expressed as follows:
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M
P: (X,) = P: (-“:)‘I' Z pﬁa (xz)
B=1

M

57(6) = S5,(x)+ Y sp(x,). x#p. (14)
P i

The tractions P,(x,). S,(x,) are expanded in the local coordinate systems x, in a series
of base functions which we chose again to be the Legendre polynomials (3):

P(x) =Y a?[—LP ()]

n=
N

Sx (xz) = Z b'(l:)[—["‘lﬂ(’:x)] (lS)
n=0

where {, = x,/d,. Other suitable base functions may be chosen as needed.

Next, influence functions are defined such that they describe the tractions at the
imaginary location of the crack x, caused by the base functions — L!*'(&,) applied at cracks
B. Four such functions are needed. The function f;2 represents the normal stress on the
imaginary location of crack a due to the presence of a solitary crack § which is loaded
normally by a base function of order a. In this spirit, we state schematically the following
definitions:

i (x,) is normal stress induced at location « by a normal stress applicd at crack f8:

g4 () is shear stress induced at location a by a normal stress applied at crack fi;
A (x,) is normal stress induced at location a by a shear stress applied at crack fi;
g (x,) is shear stress induced at location « by a shear stress applied at crack .

These definitions lead to equations which are analogous to (4):
N

Pre () = X (@ f33 () + 67 B (x,))

n=i

N
Sp () = Y (@ g (e )+ b i (x,)). (16)

n=

Using (13) and (16) onc can rewrite (14) in the form:

N M N
piv) =3 all=LYCIl+ Y Y (@ i )+ b (x,))

n=0 f=2l n=0
N M N

si(x) = Y B [=LYCEN+ Y X [ i (e)+b," ¢ (x)] (an
LEY] fi=sl nm0

with f} # a.

Now, cach cquation is multiplied by L;({,), j=0,1,2,..., N, and integrated with
respect to x, in the interval from —d, to +d,. With the help of the orthogonality condition
(8), which can be casily adjusted to the indicated interval, one finds

M N

PP = —a"R /(2 + D]+ T Y [0 i + b HE (18)
f=ln=0
M N

st = — b2,/ (Zj+ D]+ ﬂzl Y @G+ b HE) (19)
=l n=0

where the following definitions have been introduced :
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N +d, o
{ "“} N .[ {p: (xx)}u/“(xl/dz) d_\‘, (20)
Sz'l -d, S; xx)

and the formula

+d,
Zp = f =2 ()L (x,/d,) dx, @1
d,

where Z;»/" assumes, in turn. the values of Fj7”', Hi3". Gi” and Qfr”, while z{] assumes,
in turn, the values of f32', hi7. gi7 and g;7.

We now recall that x=1,2,....M; B=12.....M; j=0,1,2.....N: and
n=0.1.2,....N. Therefore (18) and (19) are the required 2M (N + 1) equations for the
M(N+1) unknowns 4/, and the M(N+ |) unknowns &;*, which are needed to find the
tractions py, and sy, in (16).

As pointed out at the end of Section 2. the stress intensity factors at each crack « and
the stresses in the vicinity of the crack should be determined by regarding each crack as a
solitary crack in an infinite medium loaded by surface tractions given, in analogy with (6),
by the differences between the terms pi(x,). or s;(x,). and the second terms on the right-
hand sides of the respective eqns (17).

4. THE H-CRACK

The results of the previous section are implemented here to analyze an H-crack
coafiguration consisting of three mutually perpendicular cracks (Fig. 2). In this implemen-
tation the single H-crack is represented by three line cracks which touch each other. This
representation will result in the usual stress singularitics at the points at which the three
cracks touch cach other, no matter what is the distance of separation and thus would give
unrealistic results at that location. However, the change in the actual geometry of the
problem makes it possible to use the present method for evaluation of the stress intensity
factors at the tips of cracks 2 and 3. These are of interest in applications of the present
mecthod to certain fracture problems in fibrous metal matrix composites. Comparisons with
other solutions shown in the sequel indicate that the method gives good approximations of
these stress intensity factors.

In Fig. 2 the middle crack of length 2L is denoted by the index 1, and the right and
left cracks of length 2R by indices 2 and 3, respectively. Local coordinates (x,, y,) are
defined at the center of each cruck. The solution will be sought for certain symmetric overall
loads which can be reduced to the normal and shear tractions indicated in Fig. 2b. The
normal and shear tractions are denoted by pj. 55, where « (or i) = 1,2, 3, and are applied
symmetrically to both faces of each crack. They satisty the following conditions:

® ® ]

it i
- Al X2 1[ Jf
2 L |1 it
2 | > el Myt t ot A
) | RN
* I i
I il
J I il 1

(a) {b}

Fig. 2. Symmetry of gecometry and loads in an H-crack type configuration.
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pilx) =pi(—x;), a=123; pi(x;)=pilx;)atx, =x;;
Six)=0; si(x,) = —si(—x,): 2=2.3;
s3(x2) = —s5(x;) at x; = x;. (22)

With reference to (15). we now select the representation of the functions P,(x,) and
§.(x,). The forms that reflect the symmetry conditions {22) are

Px,)= Y aP[-LP(&)] 2=1.23 (23a)
a=024,..

S:xs)= Y BP[~LP(E] (23b)
m=— L L3

Si(xs)= Y BP[-LE(E) (23¢)
a=-L LY.

where &, = x,/L,&; = x3/R. &, = x;/R. For n 2 0, the functions L,(&,) are the Legendre
polynomials (3), but for n = ~ 1, a = 2,3, we choose the function

+! for0<gé, <

{
() r2y =213 2
L—I(S:) {_1 for—-lsf,s() 24 . (4)

which, of coursc, is not a Legendre polynomial. It has been introduced to allow for the
possibly discontinuous shear stress distribution at the mid-points of the side cracks. We
also note that duc to the assumed symmetry of the loads (22). the £, is symmetric in &,,
and thus was represented only by Legendre polynomials of even order: S,, on the other
hand, is anti-symmetric with respect to &,, a = 2, 3. Furthermore, the absence of external
shear loads on crack 1, and the presence of symmetric loads on cracks 2 und 3 induce no
shear stresses on crack |, which implies that §, = 0. Note also that the base functions on
cracks 2 and 3 have been chosen as mirror images of cach other. That, together with the
symmetric external loads implies that:

a? =a® n=024,...

B =5 n=—~1,13,.... (25)

The next step in the solution is the evaluation of the influence functions which is
outlined in detail in the Appendix. With reference to (16) and (23) we have for crack |

Pp = Z aP fi? + Z bHE,  B=2.3. (26)

w024, n=~1.1,3

Substitution of (26) and (23a) into (17a), with & = 1, gives

pMlxy= Y a-LM+ ¥ Y 4P+ ¥ Y BMER. QT

n=0,24,.. B<2.3 ne02.4,.. LR R S I

By the prescribed symmetry, all the functions in (27) are even in x;. The last equation will
now be multiplied by L{", j = 0,2,4, ..., and integrated from 0 to L. That gives the specific
form of equation (18):

P{{n(xl)r- _ 5:,‘L ale Z Z a:ﬁf}n‘.n_*_ Z Z bf.“’H,f;";"’ (28)

= ¥
2i+1 f=2.3 n=0.2.8.... B3 AnaoT L3,

with j = 0,2,4,. .. and the coefficients being given by
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L
p' = J‘ P ()L (x,/L)] dx,
L
i = [ e an, #5 = Threon cima. @)

Note here that all Legendre polynomialsin (27) are even in x|, hence their orthogonality
property is implemented by integration of (8) from 0 to L.

We now turn our attention to crack 2, and counsider first the normal stresses. A
treatment similar to that leading to (18) or (28) gives

(:)(‘. ) = 6 R a$2)+ Z Z a,‘.’”]-‘,‘;"g” + Z bLJ)Hgnij) (30)
C2i+1 B=1.3 n=0.2.4.... mm - L L
withj =0,2.4..... and with coefficients p¥’, F} 7. HY given again by (20) and (21) where

the integration is this time from 0 to Rand o =
The shear stresses on crack 2 follow from the appropriate form of (17) which in the
present case becomes

se)= ¥ BP=LYH Y Y &g+ Y B 3D

n=— 1 1 3. B=1.38=024,.. m= -1 03,

At this time however, all the functions appearing in (31) are anti-symmetric in x,, and L',
is not a Legendre polynomial. But the procedure remains much the same, with the following
differences. Equation (31) is multiplicd by L = —1,1,3,..., respectively, and integrated
with respect to v, from O to R

W=q+ 3 ¥ 4G+ b, Q" (32)

Be 1.3 n=0.2.4,.. LI P P O

withj= —1,1,3,..., and

R
s = J QL P (xR dxy, j= —1,1,3,... 33)
0
R
g_ = “'b_;R"‘ Z j' bf,Z)L;z’(_Ysz)L(})( (x:;lR) d.\'g (34;1)
n=1,3,.. J0

where, for xy 2 0, L' (x,/R) = 1; forj = 1,3,.... the expression for o, is
R
= —p'3 f L3 (x2/ AL (x3/ Ry dxy — 8, [R/2i+ D], (34b)
0

Finally,

R

R
G"':""=j g (e [LP (x2/ R dxa Q8 = fq‘s”l(tz){L,‘”(-t:/R)Id-\f:- (35)

From the invoked symmetry conditions of thc problem, and in view of (25), the
fulfilment of (28), (30), and (32) ensures that the equilibrium conditions on crack 3 are
automatically satisfied. It is finally noted that the series (23a) can be truncated at n = N for
2= 1|, and for n = M # N for « = 2,3, depending on the geometry and the boundary
conditions. In the actual computations described in the sequel, we choose n=0,2,4 for

$AS 2%:11-0
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al.n=0.2foral”;and n = —1, 1,3 for b;>; hence the solution of the H-crack problem

was found from only eight linear algebraic equations for the eight unknowns ¢, 5.

Once the unknown coefficients have been determined, the stress intensity factors at the
tips of the H-crack can be found in analogy to (13). For the tractions on the faces of crack
2. for example,

pPi(x:) = —oi(xy), ¢°>0
$5(x) = —1%x;). >0 (36)

The stress intensity factors K| and K|, at the upper crack tip in Fig. 2 are given by

/R+t a(t)
{[\ﬂ} \/nRJ "‘{T(l)} G

ol _)a%(x2) P!:(—":)‘*‘[’.\:(-\'z)}
{1’} - {f‘i(-\‘:)} * {SI:(—V:)‘{"-VJ:(-\E) ' 3%)

5. NUMERICAL EXAMPLES

with

We now proceed to present the stress intensity factors for the H-crack and for several
other crack configurations which were obtained from the method proposed herein. Com-
parisons with other solutions will be also shown,

5.1, An HH-crack under uniform axial normal stress

Figure 3 illustrates the crack configuration and the loading conditions, and present the
stress intensity factor results, These are the K| and K factors at the upper tip A of crack
2. The figure also shows a comparison with the results found by Vitek (1977) who modeled
the eracks by a distribution of dislocations. The stress intensity factors are given for ratios
of R/L from 0 to 10; such ratios are often found in the composite fracture problems
mentioned earlier, This contrasts with most other solutions in the litcrature which are
concerned with crack branching phenomena that involve only small ratios of R/L. Vitek’s
solution is exceptional in that regard, and thus provides an opportunity for comparisons

050 T T

KII (A,/Kﬂ

oagll TS oTImee

T~ g

0.30

)-

¥ 020

=

<

= Vet

¥ 010 present analysis
l‘ e~V _VITEK (1977)

.0.20 L L i L

Fig. 3. Comparison of K; and Kj; for an H-crack under uniform normal stress at infinity.
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Fig. 4. Comparison of K| for an H-crack under uniform transverse normal stress at infinity.

Ki {A)/Ko

K, u (BYVK,

02% present analysis .
-===|. ISIDA et al. (1983)

-03 1 L i i

Fig. 5. Comparison of K, and K}; for a T-crack under uniform normal stress at infinity.
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Fig. 6. Comparison of K, and K for two parallel cracks under uniform transverse normal stress at
infinity.
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in the wider range of R/L. Both in this case and in those which follow. the series in (23a)
was truncatedatn =4 forx = 1,atn = 2 for x = 2, 3. and n = 3 was used for (23b.c). That
resulted in eight simultaneous equations for eight unknowns. It is noted that the success of
the method is more pronounced in predicting the dominant stress intensity factor Ky,. [t is
presumed however that a higher number of polynomials would have resulted in better
accuracy. A negative value in K| is of course to be interpreted as the closure of that crack
for the corresponding loads, a phenomenon which as mentioned above was not accounted
for in the present study. These negative values however are useful when using a superposition
procedure for a different set of loads.

5.2, An H-crack under uniform transverse normal stress

Figure 4 indicates this loading configuration and exhibits the predicted results for the
dominant stress intensity factor K at the tip A of crack 2. A comparison is shown with the
results obtained by Kitagawa and Yuuki (1978) which used a conformal mapping technique
(see also the handbook by Murakami, 1987, p. 389). The stress intensity factor K;, which
was reported in this last reference to be negligible and was not matched accurately by our
predictions (IKu/p"’\/Bl < 0.1). Given the small value of this quantity however. no effort
was made to improve the agreement by increasing the number of base functions.

5.3. Two puarallel cracks under uniform transverse normal stress

This is a special case of the H-crack configuration in which the middle crack has been
climinated. Figure 5 shows the results, and also a comparison with the values reported in
Isida (1972), which were found using the serics expunsion of complex potential technique
(see also the handbook by Tada et al., 1985, pp. 14-17).

5.4, A T-crack configuration

Figure 6 shows the crack configuration and loading condition and presents the pre-
dicted results comparing them with those given by Kitagawa and Yuuki (1975). It should
be mentioned here that sinee the T-crack has only one plane of symimetry the implementation
of the method required some changes in the procedure deseribed in Scetion 4. The approxi-
mating polynomials for the horizontal crack now were not (L4, LAY, LYy but (L§", L{", LiV).

CONCLUSION

The outstanding advantage of the method presented in this puper is its simplicity. Once
the stress ficlds generated by a solitary crack under power type tractions are found, the
implementation of the method necessitates only the solution of a sct of lincar algebraic
equations for the unknown coefficients.

The presented examples show that the method predicts accurately stress intensity
factors in multiple crack problems even when the cracks are very close to cach other.
Complex crack patterns, such as the H- and T-cracks are dealt with successfully by co-
alescing line cracks into desired configurations. As expected, the stresses at the points of
coalescence are not well described, but the stress intensity fuctors at the tips of interacting
cracks are predicted with remarkable accuracy even when the tips arc in close proximity.
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APPENDIX

in this appendix analytical expressions will be derived Tor the stress ficlds generated by a single crack Jocated
in an infinite isotropic medium itnd subjected to certain toading distributions. Specifically, the results of this
appendix will be used to generate the influence functions f52°, gio'. b2, 4f2 .

Consider asingle crack of length 27 located in an isotropic medium. Let the crack be subjected to concentrated
nornit! and shear loads P and Q as seen in Fig. (Al).

A coarditate system (v, 3) 18 located at the middle of the crack and the concentrated loads are applied at

adjacent to the point of application, they will be assigned negative values P <0, @ < 0.
The stress ficlds @, a,,., a,, in generalized plane stress can be found from a pair of complex potential functions
o and Q as follows (see for example Erdogan, 1962).

g, +a,, = 4Re [¢()]
a, —o, +2is, = 2Q(Z-4'(2)~ () + Q)] {AD

where Q) in the above equation is defined as

0(z) = Q) (A2)
with the functions ¢,  and ¢ are being given by

P—iQ F 43 l: 12

() = —~ HC=h (:-,:7_7) v Qi) = () (Al)
oy o POy e 4220
¢ = n - (:_n:(::__{:)y:' (A4)
¥
4P
t-—-] Q
D) st Y
} 2t {

Fig. Al. Geometry of a solitary crack in an infinite medium loaded by concentrated unit loads.
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The above equations provide a framework for the derivation of the appropriate stress functions for the case of a
single crack loaded in mode I or mode I by a given distnibution of normal and shear loadings, respectively. In
the implementation of the crack interaction scheme which has been formulated in this paper two kinds of
distributions will be needed : (a) power-type loadings (uniform, linear, quadratic, cubic, and quartic, etc.), (b) a
piecewise constant loading in shear. Stress functions for the former category can be derived by following a
procedure of contour integration. The stress function for the second type of loading can be obtained after a
somewhat cumbersome integration procedure leading however to a rather simple result.

(A} Stress functions for power-type loadings
Results will be given for the following loading cases:

t N
Pl =5:0= -1 p(D=50)= "‘(;) pa0) = s5:(8) = “(;)

A Y
Py =51y = — (;) Py =s5,0)= — (;) . (A5}

For the case of normal loading p(t) = —f(2). /(1) > 0. for example. the corresponding ¢ (2) is given by integrating
the expression {A3) as follows:

. ! VUL s
h(2) = AT J:, (:__”(/ - de (A6)

If f(r) is a polynomial as is in the case of (AS), the integration of the definite integral (A6) can be carried out by
a method described in Muskhelishvili (1933), p. 455, We first write (A6} in the form

P = 5y O (A7)
re PERRINIE
1z = J s a--»-»;; e (A%)
. -
For barge ¢ let,
f: /.’ 2o f“ ! {“
=0 =t~ g
3 > b l l
L R A R RS IEE L BT (A9)

where ¢ and 2, are constants. It can now be proven (see Muskhelishvili, 1953) that
oy = il feH =) g n— =2 ) (ALY
For example in the case of f{1) = 1, H{z) is given
Iz) = mif(z2 =¢%)" 2] (ALD

and in the case of f(1) = 1/¢, we have
) T - 3
)= ?-[(- B RerEet-al o 2]. {A12)

Let us now denote by 7%, Q1 the potential functions corresponding to normal loading of type f as given in
equation {AS), (f = 0, uniform j = I, lincar cte.). The potential functions corresponding to shear loadings will
similarly be denoted by ¢, Qi The highest order base function (= £L,($)) o this paper was with # = 4, The
corresponding potentials functions could be derived hy means of

d":m = Q:lm = [2(::_,:)I 1] - l[:_(:.‘ _/:)I :I

‘P-:“ - Qf.“ = p/(:: __{:)l ‘:] - 1[__: __:(:: __{2)[.': - ((!/2”

d)—(»:' = m:! = [2{:(:2 “{.'.,l .'} - 1{:! _::(:2 _{:)lsl _‘(:{2?/2)1

M R i e B B B e A N A T R b
DL = QY = [ =) P = ) (02— 1428 (ALY

and
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R o (A13)

(A.2) Piecewise constant shear loading
We consider here a shear loading as follows:

. -1 0sr<¢
Sw"{-o—l —l t<0. (A13)

Again by integration of equation (3) the potential ¢* is given by

o i 0 ({Z_IZ)I.IZ _ +7 ({z__’:)lz
1) = TRy [J:{ T dr NTEr— dej. (Al6)
The indefinite integral
3 ((2_,1)!/2
J(z.0) = _——(l—:;——d' (ALT)

can be evaluated by transforming it first into ¢ = ¢—z, which results in

2 I SR SN T
Tty = J[ o ( =~ 4 (AL8)

and then using the formula (Bois, 1961)

+x+0)" ;
J(‘n s+o dv = (ax*+bx+0)"? +—~ln[h+"a\+",/a(ar +bx+¢)]

X "\/a
ek bx =2 c(ax: + by Ry
+ /e ln[ ctbr ‘/‘:(—‘-‘-f * "“’]. (A19)

ldentityinga = =1, b = =2z, ¢ = ~(2*=/°) finally provides

-_w- 2% /(=1 =
2~ 2zt - ‘;,/i N - ) (A20)

JE) = (=) il =2+ 20— P i =) ln(
leading to

(A2D)

with Q*(z) = ¢*(2).

1t is of interest to note that as = — 0, ¢ *(2) exhibits a logarithmic singularity resulting in o singularity of the
sume kind in the stresses.

The influcnce functions £33, g7, Ay?., ¢ie can be obtained through the use of (A13), (A21) and (Al).



